Theorems of Vector Calculus

Gradient Theorem or the **Fundamental Theorem of Line Integrals**: Let C be a piecewise smooth curve parameterized $\vec{r}(t)$ for $t \in [t_1, t_2]$. If f is a differentiable function

such that ∇f is continuous on *C*, then $\int_C \nabla f \cdot d\vec{r} = f(\vec{r}(t_2)) - f(\vec{r}(t_1))$.

- Apply to conservative vector fields.
- Line integrals of a conservative vector field are independent of path.
- Applications:
 - Work done by gravity is independent of path
 - Conservation of Energy
- Green's Theorem: Let a piecewise smooth curve C in a plane be positively oriented, simple, and closed, and let the region D be the region inside C (i.e. $C = \partial D$). If P(x, y) and Q(x, y) have continuous partial derivatives on D, then

 $\oint_C Pdx + Qdy = \iint_D \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} dA$. Note: This is just a 2D version of Stokes' Theorem

- **Stokes' Theorem** in three-space: Let S be an oriented surface. Let ∂S denote the oriented boundary of S. Let \vec{F} be a vector field on S. Then $\iint_{c} (\nabla \times \vec{F}) \cdot d\vec{S} = \oint_{c} \vec{F} \cdot d\vec{r}$.
 - Corollary: Let S_1 and S_2 be oriented surfaces bounded by the same closed curve and induce the same orientation, and let \vec{F} be a vector field on both surfaces. Then $\iint_{\alpha} (\nabla \times \vec{F}) \cdot d\vec{S} = \iint_{\alpha} (\nabla \times \vec{F}) \cdot d\vec{S}$
- **Divergence Theorem**: Let *E* be a bounded, simply connected solid in three-space with a ٠ piecewise smooth surface ∂E . If $\vec{F} = \langle P, Q, R \rangle$ has continuous first-order partials,

then
$$\oiint_{\partial E} \vec{F} \cdot d\vec{S} = \iiint_E \nabla \cdot \vec{F} dV$$

- **Stokes' Theorem** (generalized version): Let *M* be an oriented manifold and ∂M be the • oriented boundary of M, and let ω be a differential form defined on an open set containing
 - *M*. Then $\oint_{\partial M} \omega = \int_{M} d\omega$.

 - All theorems above are just specific cases of this generalized version.
 - All theorems are very intuitive to think about and understand.
- Applications
 - Mechanics
 - Work done by a conservative force (ex: gravity)
 - Electricity and magnetism 0
 - Gauss's Law: Apply Divergence Theorem: $\frac{Q}{\varepsilon_0} = \oint_{\partial E} \vec{E} \cdot d\vec{A} = \iiint_E \nabla \cdot \vec{E} dV$
 - Ampère's Law: Apply Stokes' Theorem: $\mu_0 I = \oint \vec{B} \cdot d\vec{\ell} = \iint (\nabla \times \vec{B}) \cdot d\vec{S}$
 - These concepts apply to all of Maxwell's equations in general.